S(t)=-16t^2+40t+70

Simple and best practice solution for S(t)=-16t^2+40t+70 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for S(t)=-16t^2+40t+70 equation:



(S)=-16S^2+40S+70
We move all terms to the left:
(S)-(-16S^2+40S+70)=0
We get rid of parentheses
16S^2-40S+S-70=0
We add all the numbers together, and all the variables
16S^2-39S-70=0
a = 16; b = -39; c = -70;
Δ = b2-4ac
Δ = -392-4·16·(-70)
Δ = 6001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-\sqrt{6001}}{2*16}=\frac{39-\sqrt{6001}}{32} $
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+\sqrt{6001}}{2*16}=\frac{39+\sqrt{6001}}{32} $

See similar equations:

| 4^(x-1)=16384 | | -4(-7-b)=1/3(b+62) | | 2(5-3v)=9v=28 | | 4*3^2x-2^2x-1=3^2x+1+2^2x | | s4+42=154 | | 3/4n-1/12=7/3 | | x+.2x=17.5 | | 8x-8=(2x-2 | | 25^2=15(15+x) | | 6y-13=37 | | 15956=9403+x | | 2(x^2-18)=38 | | 14-n=6n | | -1.3x=-520 | | -7=y-21/5 | | 37=26-3c | | 180n-360=120n | | 1/6n+1/5=7/11 | | 2x^2+11x+-21=0 | | 1/3n-11/25=7/10 | | -4(3+y)+6y-12=-36 | | 3x-3=2x-11= | | 114+4x=x | | 4=1+2/3y | | 7h=-23=33 | | 16+5x-22=2.5x-42 | | -8+1/2x=2 | | -0.4(x=3)4 | | 2(a+5)=3(a-4) | | 4x-5=6+6x-2x | | 4x+2x=x+x+10 | | 2(x-7)-(3x+4)+24=2 |

Equations solver categories